Approximations and QoS Panel

Johannes Gehrke

http://www.cs.cornell.edu/johannes Department of Computer Science Cornell University

Semantic Approximations: How?

Thesis: If you approximate, you have to inform the user what this means.

This is hard.

Note 1: It is not clear that users want approximations!

Note 2: There will be competing axes!

(How to combine errors, what are nice properties of such functions that we can use (monotonicity), how do we know what is the right function?)

Outline

- Aggregates
- Set-valued results
- Composing operators

swiner/Mattiple queries

Two Models

- Fast CPU, not enough main memory, and writing to disk is too slow
- Slow CPU, cannot keep up with the rate of arrival

What Works (?): Approximating Aggregates

 Problem: Records of relation R are streaming in -compute the 2nd frequency moment of attribute R.A, i.e.,

 $F_2(R.A) = \sum_{i=1}^{N} (a_i)^2 \text{ where } a_i = \text{frequency}(\text{ i-th value of R.A})$ $F_2(R.A) = \text{COUNT}(\mathbb{R} \bigwedge_A \mathbb{R})$

(the size of the *self-join* on R.A)

• Exact solution: too expensive, requires O(N) space.

Sketches for 2nd Moment Estimation [Alon et al.]

- Key intuition: Define a random variable X that can be easily computed over the stream, such that E[X] = F₂ (unbiased) and Var[X] is small → probabilistic guarantees can be given.
- Technique
 - Define a family of 4-wise independent {-1, +1} random variables

$$\{\xi_i : i = 1, ..., N\}$$

• Pseudo-random generator using only O(logN) space (for seeding)!

Define the random variable $Z = \sum_{i} a_i \xi_i$

• Simple linear projection -- simple to¹ maintain online: just add ξ_i to Z whenever the i-th value is observed in the R.A stream

• Define X =
$$Z^2$$

 $Z = \xi_0 + 2\xi_1 + 2\xi_2 + \xi_3$

Sketches for 2nd Moment Estimation (Cont.)

- Given this basic X construction, build several iid copies of X and averaging+median-selection to "boost" accuracy and confidence
- Using Chebyshev/Chernoff bounds
 - Build approximation to F2 within a relative error of ε with probability $\ge 1 \delta$ using only $O(\log N \cdot \log \frac{1}{\delta} / \varepsilon^2)$ space

Notes:

- Sketches are one general class of approximation guarantees for aggregates
- Many other results/query types (quantiles, L_p norms, patterns, periodicities, data cleaning, sliding windows,...)
 SWIM 1/9/2003

Aggregate Queries: Remarks

- Computation intensive?
- Multiple joins: Approximation errors go up exponentially, but we can still quantify them
- No additional statistics needed (no multidimensional histograms)
- It gets hard very quickly (Group-BY?)

Somewhat understood?

Approximating Set-Valued Queries

- Problem: All existing synopsis data structures approximate answers to aggregate queries (e.g., sum, count, moments).
- How do we approximate set-valued queries?
- How do we load-shed intelligently?

Error Metrics for Set-Valued Query Answers

- Need an error metric for (multi)sets that accounts for:
 - Differences in record frequencies
 - Differences in record values
 - Differences in record importance (this depends on the query and the application)
- Old and new metrics:
 - MAC (Match-And-Compare)
 - EMD (Earth Mover's Distance)
 - Symmetric multi-set difference
 - Archive metric

SWiM 1/9/2003

Set-Valued Queries via Samples

- Idea: Use a sample and then "scale" the sample to approximate the query answer.
- How can we scale the sample?
 - Can treat each sample point as the center of a cluster of points and then generate points surrounding the cluster according to some distribution, e.g., using kernels or other models of a cluster
 - Aqua gives an approximate count of the number of records and a representative subset of the records

Using Histograms

- Summary data via histograms and perform queries in the histogram space
 - Translate SQL query into relational algebra operations on histograms
 - Implementation of selection, projection, join, etc. is the straightforward implementation on the histograms
 - Each multidimensional histogram bucket corresponds to a set of approximate data records that could be generated using some distributional assumption in the bucket
- Experimental results demonstrate histograms give much lower MAC errors than random sampling

Problems

- For high-dimensional data, histograms are not very good (curse of dimensionality) and good histograms are expensive to construct
- Join operation is expensive as histograms are converted to approximate relations (size can be larger than the original dataset!)

One Possible Approach

Perform semantic loadshedding

- Define a metric between sets
- Drop records such that the distance between true query answer and approximate query answer is minimized

• Recall: Set metrics

- MAC (Match-And-Compare)
- EMD (Earth Mover's Distance)
- Symmetric multi-set difference
- Archive metric

Symmetric Multi-Set Difference: Static Join

Symmetric Multi-Set Difference: Window Join

Fixed memory allocation

<u>____cost</u>

Capacity: 0..1, linear cost

SWiM 1/9/2003

- Many algorithmic problems in approximations/load shedding
 - Appropriate new/meaningful metrics
 - Designing algorithms that maximize these metrics
- User interface for
 - Specifying approximations
 - Conveying approximations to the user

Composing Operators

We cannot compose approximation operators blindly. Example:

- The join of a sample is not a sample of the join!
 - Remedy: Sample from one relation according to the frequency in another relation
 - What about joins with more relations: Need multi-dimensional histograms
 - Generic negative results (arbitrary detailed statistics, composing two uniform samples \rightarrow cannot get uniform sample of the join).

• Selections:

 Relative error of a query is proportional to the inverse square of the selectivity

Aurora drop boxes have to be designed carefully.

SWiM 1/9/2003

- If you have multiple queries, you need to allocate your resources between these queries.
- Metrics (for aggregate queries):
 - Reduce max-error
 - Reduce average error
 - Queries with priorities?
 - Reduce variance? Others?
- Space allocation has to take semantics of approximation technique into account.
 - R1.a=R2.a and R1.a=R3.a && R3.b=R2.a

Reuse sketch for R1.a: OK

• Reuse sketch for R1.a and R2.a: CYCLE

Summary

- Aggregate queries
- Set-valued queries
 - Need new metrics for measuring quality for set-valued query answers
 - Need new ways to specify application-specific permissible approximations
 - Need new ways to report what
- Composition of operators
 - Hard problem
 - Feedback and/or statistics are needed
- Multiple queries
- Need ways to specify QoS!

Quality is never an accident; it is always the result of intelligent effort. John Ruskin (1819 - 1900)